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Although a great deal of research has focused on the reliability of bolts, self-loosening,
which is a main cause of failure of bolted connections, is still not fully understood. To
develop a complete model of the self-loosening behavior of a transversely excited bolted
connection, an extensive study of the mechanisms of bolt self-loosening is presented here.
In this work, the theory of Hertz contact stress is employed to find a contact stiffness. Using
this stiffness with a two-degree-of-freedom dynamic model gives the transverse force
applied to the bolt when the bolted connection is subjected to dynamic excitation. This
transverse force is found to be an important factor in self-loosening. Based on the results
from static and dynamic models, a main cause of bolt self-loosening is found to be
impacting between the clamped mass and the clamping bolt, and the process of bolt
self-loosening is predicted. This prediction can be favorably compared to experimental
results.
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1. INTRODUCTION

Approximately 200 billion fasteners are produced annually in the United States and there
is a growing demand for more reliable threaded fasteners [1]. After fatigue, self-loosening
is the most frequent cause of failure of dynamically loaded bolted connections.
Additionally, fatigue is often initiated by partial loosening. Despite the importance of
self-loosening in bolted connections, complete physical and mathematical models of the
underlying physical phenomena do not currently exist in the literature.

Goodier and Sweeney [2] and Sauer et al. [3] tested bolted connections that were
dynamically loaded in the axial direction (parallel to the bolt axis). In spite of their failures
to obtain a complete model for the self-loosening of the threaded fasteners, they offered
an explanation for self-loosening that does contain the primary mechanism. In these
models bolted connections loosened due to the relative motion between the thread flanks
and other contact surfaces of the clamped and clamping parts.

In 1969, Junker [4] presented the most important paper on threaded fastener loosening
to date. In this work Junker described experiments that were run with a new kind of
machine (now called the ‘‘Junker machine’’). With this apparatus, Junker obtained
relationships among the relative displacement between clamped parts, a transverse force
(perpendicular to the bolt axis), and the axial preload applied to the bolt.
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Sakai [5] investigated loosening mechanisms for a bolt at the center of rotation of a pair
of clamped parts while these parts were twisted. He also investigated the effect of transverse
loads on the bolt and drew the conclusion that the necessary condition for a bolt to loosen
is that the friction coefficient at the threads must be less than 0·03. However, when
unlubricated metal-to-metal contact occurs, the friction coefficient is much greater than
0·03. Obviously, other casuses of self-loosening must exist.

Koga and Isono [6, 7] studied the behavior of bolts, including the characteristics of
impulsive friction. They suggested the following theory concerning the causes of dynamic
bolt loosening. When a bolt is subjected to axial impacts, the stress waves inside the bolt
body cause the axial preload (clamping force) to decrease, and then the bolt loosens.
However, this hypothesis contradicts the experimental results presented by other
researchers, which show that axial vibrations seldom cause bolt loosening [4, 5].

In a recent paper [8], Hess presents analytical and experimental results for the loosening
and tightening of a sinlge threaded fastener which is subject to axial vibrations. In this
paper, loosening occurs when the resultant of the frictional moments, which are functions
of the dynamic motion, becomes smaller than the moment, acting in the loosening
direction, from the normal thread contact force. This self-loosening mechanism is similar
to the mechanism presented in this paper for transversely vibrated bolted connections.
However, the effects that lead to variations in the frictional moments are quite different
between the axially excited and transversely excited cases.

As can be seen, the existing literature has been limited to investigations of only certain
aspects of bolt self-loosening. To develop a complete model of this phenomenon, an
extensive study of the mechanisms of bolt self-loosening, including static and dynamic
behavior, is necessary. In this paper, a mathematical model of a bolted connection is
investigated to determine the real causes of self-loosening when the connection is subjected
to transverse excitation. This analysis reveals that impacts between the clamped parts and
the bolt are necessary conditions for dynamic loosening. To determine the amplitude and
duration of the impact force, a two-degree-of-freedom dynamic model with a
non-continuous stiffness is established, in which Hertz contact stress theory is adopted to
obtain an equivalent contact stiffness. To evaluate the complete motion of the bolted
connection, a variable time step computational approach is used. With this simulation the
number of impacts, and their durations and amplitudes, can be predicted. Combining these
results with the critical transverse force obtained previously [9, 10] leads to the prediction
of the self-loosening process. All of these results are validated experimentally.

2. HERTZ CONTACT FORCE AND CONTACT STIFFNESS IN IMPACT

A simple model for a single bolted connection is selected (see Figure 1). A mass (circular
disk) is fastened to a large plate by a bolt which passes through a circular hole in the mass.
This bolt applies a preload Q to the mass. The system is excited by a transverse

Figure 1. Model of a transversely excited bolted connection.
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Figure 2. Displacement w due to force P on an elastic plane.

displacement x(t) which is applied to the plate. If the amplitude and frequency of this
displacement are increased to some levels, then the mass will move relative to the plate.
Larger relative displacements may lead to impacting between the mass and the bolt. As
will be seen, the amplitude and duration of the impact forces are significant factors in the
self-loosening of bolts. To determine the amplitude and duration of these impact forces,
Hertz contact theory is first used to derive a relationship between the deformations of the
mass and bolt, and the contact force during the impact.

This derivation begins by considering an elastic plane (Figure 2). A concentrated force
P applied to the plane causes a displacement w at another point away from P; w is given
by [11]

w=P(1− n2)/pEr, (1)

r is the distance between P and the point with displacement w. E is Young’s modulus and
n is Poisson’s ratio for the material of the elastic plane.

When two cylinders with different radii are in contact, the intensity of the pressure p
over the surface of contact is reasonably represented by the ordinates of a semi-ellipsoid
constructed on the surface of contact [11]. The lengths of the semiaxes of the ellipse are
b and p0 (see Figure 3). The maximum pressure value clearly exists at the center of the
surface of contact. The equation of the ellipse is

p2/p2
0 + x2/b2 =1. (2)

The total contact force F is obtained by integrating the pressure p over the entire contact
area:

F=gA

(p) dA= pabp0. (3)

Under the application of the contact force F, the bolt and mass of Figure 1 have
displacements w1 and w2, respectively. Let

Figure 3. Stress distribution over the contact area between the bolt shank and the mass.
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u=w1 +w2, (4)

where u represents an amount of interpenetration between the bolt and mass. Using
equation (1), u is given by

u=w1 +w2 =$(1− n2
b )

pEb
+

(1− n2
d )

pEd % gA 0pr1 dA

=[kb + kd ]p0 g
a

−a $g
b

−b
X1− x2/b2

x2 + y2 dx% dy, (5)

where Eb and nb , and Ed and nd are Young’s modulus and Poisson’s ratio, respectively, for
the bolt and the mass, respectively, and

kb =(1− n2
b )/pEb , kd =(1− n2

d )/pEd . (6)

Noting the symmetry of the limits of integration and of the integrand, equation (5) reduces
to

u(b)=4[kb + kd ] g
a

0 $g
b

0
X1− x2/b2

x2 + y2 dx% dy

=4[kb + kd ]p0 g
b

0
X1−

x2

b2 log
a+zx2 + a2

x
dx. (7)

This elliptic integral is difficult to evaluate in closed form and, therefore, numerical
integration is adopted to obtain the function u(b). Since the integrand goes to infinity as
x approaches zero, the integral in equation (7) is improper. The convergence of this integral
must be established before numerical integration can be used to evaluate equation (7).

The limit test [12] can be used to establish the convergence of the integral in equation
(7). The integral I(a, b),

I(a, b)=g
b

a

f(x) dx, (8)

is improper because, while f (x) is a continuous function f (x)e 0 in [a, b],

lim
x:a

f (x)=a. (9)

It can be shown that I(a, b) will converge if for a constant q, 0Q qQ 1, the limit exists:

lim
x:a

(x− a)qf (x). (10)

Based on this theorem and using l’Hôpital’s rule [12]:

lim
x:a

(x− a)q z1− x2/b2 log ([a+zx2 + a2]/x)=0 for 0Q qQ 1. (11)

Therefore, the integral in equation (7) converges. Given a constant 0Q o�1, u(b) in
equation (7) is approximated by [13]

u(b)1 4[kb + kd ] p0 g
b

0+ o

z1− x2/b2 log ([a+zx2 + a2]/x ) dx. (12)
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Figure 4. Relationship between the contact force F and relative displacement u1: ——, calculated data; ——w ,
linear approximation.

The integration in equation (12) can be implemented numerically.
The integral in equation (12) is a function of b known as g(b). Therefore,

u(b)=4(kb + kd )p0 g(b). (13)

From equation (3), p0 is given by

p0 =F/(pab). (14)

Substituting equation (14) into equation (13) yields

u=04(kb + kd )
pab 1Fg(b). (15)

Timoshenko [11] has derived a relation for b as a function of F:

b=z4F(kb + kd )R1 R2 /(R1 +R2), (16)

where R1 takes the negative value of the radius of the hole in the mass, and R2 takes the
positive value of the radius of the bolt. For a given value F, equation (16) provides a value
for b. Then g(b) is obtained by numerically integrating the integral of equation (12).
Substituting values for b and g(b) into equation (15) yields a relationship between u and
F, as shown in Figure 4. This relationship is seen to be almost linear, and it can be
approximated as

F= k1 u, (17)

where the constant k1 is the contact stiffness. The values used to produce the results
presented in Figure 4 are listed in Table 1.

3. IMPACT FORCE AND IMPACT DURATION

When an impact occurs, the bolt bends due to the impact force. The bending stiffness
of the bolt then affects the amplitude and duration of the impact. Therefore the system
composed of the bolt and the mass may be modeled as a mass–spring system, combining
the effects of Hertz contact and bending (see Figure 5). In Figure 5, mb and md are the
masses of the bolt and mass, respectively, c1 and c2 are damping coefficients of the bolt
in Hertz contact and in bending, respectively, k1 is the Hertz contact stiffness, and k2 is
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T 1

Values used to determine the Hertz contact stiffness k1

Symbol Definition Value

R1 Radius of hole in mass (mm) −3·2169
R2 Radius of bold shank (mm) +3·1750
Eb Young’s modulus for bolt (GPa) 200·0
Ed Young’s modulus for mass (GPa) 200·0
nb Poisson’s ratio for bolt 0·300
nd Poisson’s ratio for mass 0·300

For impact simulation (Figure 8)
a Height of contact area (mm) 6·35
k1 Hertz contact stiffness (N/m) 4·90 E8

For self-loosening simulations (Figures 16 and 17)
a Height of contact area (mm) 13·97
k1 Hertz contact stiffness (N/m) 9·28 E8

the bending stiffness of the bolt. x1 (t) and y(t) are the absolute displacements of the bolt
shank and the mass, respectively. x(t) is the excitation displacement of the plate:

x(t)=−Ad cos V(t+ t0), (18)

where Ad is the amplitude of the excitation, V is the frequency of the excitation, and t0

is a time delay that accounts for the time of the onset of an impact. ff1 and ff2 represent
the friction forces between the mass and the plate (interface 1) and between the mass and
the bolt head (interface 2), respectively:

ff1 = m1 (Q+md g) sgn (ẏ− ẋ), ff2 = m2 Q sgn (ẏ− ẋ1). (19)

Hunt and Crossley [14] presented a model of the Hertz contact forces, including
damping:

F= k1un(1+ lu̇q), (20)

where u and u̇ are the relative displacement and velocity between the contacting surfaces,
respectively, n is a value that depends on the geometries of the surfaces in contact (n=1
for two flat plates in contact and 1·5 for a sphere impacting a plate), k1 and l depend on
the material properties and geometries of the bodies in contact, and q is an arbitrary integer
value (results are presented in reference [14] for q=1 and 2). Taking n and q both equal
to unity, the contact force of equation (20) becomes

F= k1 u+ c1 uu̇, (21)

Figure 5. Dynamic model of the bolted connection: (a) during contact; (b) without contact.
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which includes the non-linear dissipative term c1 uu̇. However, to simplify the simulation
process described in section 7 below, it is desired to have piecewise linear equations of
motion. Therefore, it is assumed here that the Hertz contact force has the form

F= k1 u+ c1 u̇. (22)

The affects of this assumption will be discussed in section 8.
The governing differential equations of motion are then found to be (after reference [16]):

mb ẍ1 + c2 ẋ1 + k2 x1 − {c1 (ẏ− ẋ1)+ k1 [y− x1 − (E/2)sgn (y− x1)]}d

= c2 ẋ+ k2 x+ ff2,

md ÿ+ {c1 (ẏ− ẋ1)+ k1 [y− x1 − (E/2) sgn (y− x1)]}d=−ff1 − ff2, (23)

where d is a Kroenecker delta function used to model the transition from the system of
Figure 5(a) to the system of Figure 5(b), and back:

d=61,

0,

if

if

=y− x1 =eE/2,

=y− x1 =QE/2.
(24)

In actuality it is more convenient to examine equations (23) in terms of two relative
displacements:

z0 y− x, z1 0 y− x1, (25, 26)

where z represents the relative displacement of the mass with respect to the plate, and z1

represents the relative displacement between the mass and the bolt. Substituting equations
(25) and (26) into equations (23), (19) and (24), respectively, yields

mb (z̈− z̈1)+ c2 (ż− ż1)+ k2 (z− z1)− {c1 ż1 + k1 z1}d=−mb ẍ− k1 (E/2) sgn (z1)d+ ff2,

md z̈+ {c1 ż1 + k1 z1}d=−md ẍ+ k1 (E/2) sgn (z1)d− ff1 − ff2, (27)

ff1 = m1 (Q+md g) sgn (ż), ff2 = m2 Q sgn (ż1), (28)

d=61,

0,

if

if

=z1 =eE/2,

=z1 =eE/2.
(29)

It should be noted that the friction coefficients m1 and m2 will be represented in the
simulations presented below in terms of static (ms1 and ms2, respectively) and kinetic (mk1

and mk2, respectively) values. When ż or ż1 is equal to zero, the respective friction force
is determined by assuring equilibrium at the corresponding interface. Motion resumes
when this friction force exceeds the value of the corresponding static friction force as
determined by equation (28) using the static friction coefficient ms1 or ms2.

There are seven different states of motion that must be considered, based on the three
sgn functions that appear in equations (27):

(1) slip at interface 1, slip at interface 2, contact between mass and bolt;
(2) slip at interface 1, slip at interface 2, no contact between mass and bolt;
(3) stick at interface 1, slip at interface 2, contact between mass and bolt;
(4) stick at interface 1, slip at interface 2, no contact between mass and bolt;
(5) slip at interface 1, stick at interface 2, contact between mass and bolt;
(6) slip at interface 1, stick at interface 2, no contact between mass and bolt;
(7) stick at interface 1, stick at interface 2.
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T 2

Possible motion state transitions

From To Criteria From To Criteria

1 2 =z1=:E/2 2 1 =z1=:E/2
1 3 =ż=:0 2 4 =ż=:0
1 5 =ż1=:0 2 6 =ż1=:0

3 1 =ff1=:ms1(Q+mdg)† 4 2 =ff1=:ms1(Q+mdg)†
3 4 =z1=:E/2 4 3 =z1=:E/2
3 7 =ż1=:0 4 7 =ż1=:0

5 1 =ff2=:ms2Q‡ 6 2 =ff2=:ms2Q‡
5 7 =ż=:0 6 7 =ż=:0

7 3 or 4 =ff2=:ms2Q§
7 5 or 6 =ff1=:ms1(Q+mdg)>

† ff1 =−{mdẍ+(k1[z1 − (E/2) sgn (z1)]+ c1ż1)d+ mk2Q sgn (ż1)}
‡ ff2 = (md /[md +mb ])[k2(z− z1)+ c2ż]− k1[z1 − (E/2) sgn (z1)]d

−(mb /[md +mb )]mk1(Q+mdg) sgn (ż)
§ ff2 =mbẍ+ k2(z− z1)− k1[z1 − (E/2) sgn(z1)]d
> ff1 =−{(md +mb )ẍ+ k2(z− z1)}

While these states could be considered simultaneously using the formulation in equations
(27), it is more convenient from a computational outlook to consider them separately.
Additionally, it is imperative to determine the transitions between states precisely. Table 2
shows the possible transitions from the seven states listed above.

To find z1 and the impact force F, one still needs the values of four parameters, k1, k2,
c1 and c2, as shown in Figure 5. The value of k1 for this situation was determined using
Figure 4 (see Table 1). k2 is the bending stiffness of the bolt. During the experiments that
were conducted to verify the impact force and duration (see Figure 6 and Figure 7), the
bolt was tightly threaded against the shaker table (below the plate) so that no relative
displacements between the bolt and the shaker table could take place. Therefore, it can
reasonably be assumed that the bolt acted as a cantilevered beam with a fixed end, and
the bending stiffness k2 can be found by using Timoshenko beam theory [15]:

k2 =12Eb I/[L2
3 (L3 +3L4)], (30)

Figure 6. (a) Cantilevered Timoshenko beam model of the bolt for the impact test, (b) the free body diagram
of the bolt.
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Figure 7. Experimental setup for impact force measurements.

where L3 is the length of the bolt from its threaded end to the bottom of the unthreaded
shank (see Figure 6), L4 is the length of the bolt from its threaded end to the top of the
mass, and I is the moment of area of the bolt cross-section:

I= pR4
2 /4. (31)

The values for the system studied in this paper are listed in Table 3.
The values of c1 and c2 are determined indirectly, by assuming stiffness proportional

damping:

[C]=$c1 + c2

−c1

−c1

c1%= b $k1 + k2

−k1

−k1

k1%. (32)

If the equations of motion are uncoupled using the normalized modal matrix [P] for the
undamped, homogeneous form of equations (23), then the damping coefficient matrix [C]
of equation (32) is transformed into the diagonal form:

[P]T [C] [P]=$2z1 v1

0
0

2z2 v2%=$bv2
1

0
0

bv2
2%. (33)

T 3

Values used in the impact simulation

Symbol Definition Value

Eb Young’s modulus for bolt (GPa) 200·0
L3 Length of threaded section of bolt (mm) 13·331
L4 Active length of bolt (mm) 17·4625
R2 Radius of bolt shank (mm) 3·175
k2 Bending stiffness of bolt (N/m) 1·64E7
z1 First modal damping factor 0·001
b Damping to stiffness constant ratio (s) 8·926E-7
D Diameter of sliding mass (mm) 203·0
d Diameter of slot in sliding mass (mm) 6·4338
h Thickness of sliding mass (mm) 12·7
r Density of sliding mass (kg/m3) 7840·0
md Mass of sliding mass (kg) 3·151
ż1(0) Initial velocity of sliding mass (m/s) 0·656
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Figure 8. Simulation of the impact force between the bolt and the mass.

Then, b can be selected to give the desired value of either of the modal damping factors,
z1 and z2 (see Table 3).

Now, the time history of the impact force F can be obtained. Previously it was shown
that the impact force F is proportional to the relative displacement z1 when z1 q 0 (see
Figure 4), while the force vanishes for z1 E 0, i.e.,

F=6k1 z1,

0,

z1 q 0,

z1 E 0.
(34)

Figure 8 shows the impact force F calculated using the model of equations (27).

4. VERIFICATION OF THE IMPACT FORCE

Experiments were run to verify the mathematical model of the impact force that was
derived in the previous section. The layout of the experimental apparatus is shown in
Figure 7. A plate is firmly attached to a shaker table. Then a mass is placed on the plate,
and a bolt is passed through an untapped slot in the mass and threaded into a tapped hole
in the plate. The length of the bolt is selected so that it bottoms out on the shaker
table without applying a preload to the mass. Dimensions of the mass are listed in Table 3.

At the beginning of the test, the mass was held by a straight pin, inserted through the
mass and into the plate, despite being pushed by two compression springs. Once the pin
was pulled out, the springs pushed the mass across the plate until the mass collided with
the bolt. An eddy current transducer mounted on the plate measured the displacement of
the mass as a function of time. This information indirectly provided the velocity of the
mass as it slid. An accelerometer mounted on the mass was used to measure the
acceleration of the mass. Both the displacement and the acceleration signals were
amplified, and these amplified signals were captured by a digital oscilloscope which was
triggered by the displacement signal from the eddy current transducer. An X–Y plotter
was used to record the results permanently.

The experiment was repeated over 100 times. Since the velocity immediately before
impact depends on the initial conditions at the release of the mass (removal of the pin),
it was found to be difficult to duplicate exactly the results of this experiment. However,
as long as the impact velocities were the same between two trials, the measured
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accelerations of the mass were also identical. The impact velocity ż1 (0) for this example
is given in Table 3.

The impact force as predicted by the model of Figure 5 and Figure 6 is shown in
Figure 8. This force mainly consists of a low frequency (356 Hz) component and a high
frequency (35·9 kHz) component. The calibration of the measurement system showed that
the component with the higher frequency (35·9 kHz) could not be measured. Therefore,
a low pass filter was applied to the analytical results so that these results could be compared
directly to the experimental values. Figure 9 shows this comparison and it is seen that the
predicted results agree quite favorably with the experimental results. It should be noted
that the values of k2 and ż1 (0) were adjusted slightly from their original theoretical values
to produce this result. The values used to produce Figure 9 are listed in Table 3.

5. CIRCUMFERENTIAL FRICTION FORCES OPPOSING LOOSENING

The basic physical phenomenon that plays the pivotal role in the self-loosening
mechanism of transversely excited bolted connections is Coulomb friction. It is the friction
between the male and female threads that allows a bolted connection to stay tight despite
an off-torque that tends to loosen the connection. This off-torque is due to the axial force
in the bolt and the fact that the threads are helical inclined planes [5]. Since no additional
torques are applied to the bolt during self-loosening, something must occur to reduce the
effect of friction on the threads.

To begin this discussion, imagine a block on a table (see Figure 10). The block can be
moved in direction 1 by the application of a force (force 1). Assuming the action of
Coulomb friction between the block and the table, the value of the force required to cause
motion is infinitesimally larger than the value of the frictional force between the block and
the table. If another force (force 2) is applied to the block in direction 2, then the block
will move with a component in direction 2 with an acceleration equal to force 2 divided
by the mass of the block. That is, at the instant that force 2 is applied, the force of friction
is zero in the direction which is perpendicular (i.e., direction 2) to the direction of motion
(i.e., direction 1) [4, 17].

Once the block starts moving in direction 3, for example, under the application of force
1 and force 2, the value of the frictional force in direction 2 is no longer zero. This is

Figure 9. Comparison of the simulated and experimental impact forces: ——, simulation result; ——w ,
experimental data.



. .   . 200

Figure 10. A block sliding on a plane subject to a force perpendicular to the direction of motion.

because the velocity of the block now has a component in direction 2. Instead, the friction
force is zero in direction 4, which is perpendicular to direction 3. Therefore, any force
applied in direction 4 leads to an acceleration that is proportional to the force in this
direction. This process continues for any new direction of motion.

Now, consider the situation shown in Figure 11, which represents the contact area on
a thread or at the bolt head. nt is the relative transverse velocity between the male and
female thread forms or between the bolt head and the clamped part. nc is the relative
circumferential velocity that occurs when the total friction torque is smaller than the
off-torque. The resultant relative velocity n is given by

n=(=nt =+ =nc = cos (p/2+ u))i+ =nc = sin (p/2+ u)j

=(=nt =− =nc = sin u)i+ =nc = cos uj. (35)

a is the angle between nc and n, where:

cos a=
n · nc

=n= =nc ==
[(=nt =− =nc = sin u)i+ =nc = cos uj] · [−=nc = sin ui+ =nc = cos uj]

=nc = z(=nt =− =nc = sin u)2 + (=nc = cos u)2

= (=nc =− =nt = sin u)/z=nt =2 −2=nt = =nc = sin u+ =nc =2. (36)

The velocity ratio L is then defined as

L=
=nc =
=nt = . (37)

Substituting equation (37) into equation (36) yields

Figure 11. Total relative velocity of a point on a thread or the bolt head.
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Figure 12. Relationship between the normalized friction torque T/T0 and velocity ratio L.

cos a=(L−sin u)/z1−2L sin u+L2. (38)

q is defined as the normal force per unit area. Therefore, the friction force per unit area
is mq. If there is no transverse motion of the ring of Figure 11, then the friction torque
T0 which resists loosening is due to the friction forces over the whole ring:

T0 =gA

(mqr) dA. (39)

On the other hand, if the ring is moving as shown in Figure 11, then according to the
principle discussed previously, the friction torque T becomes

T=gA

(mqr cos a) dA=gA

(mqr) [(L−sin u)/z1−2L sin u+L2] dA. (40)

This function can be evaluated for fixed values of L. Figure 12 shows the relationship
between T (normalized by the zero motion friction torque T0) and L.

From Figure 12, it can be seen that if L approaches zero with =nt = $ 0, then T
approaches zero since T0 does not vary with L. In this case, the threads or bolt head are
free of the resisting torque and any small off-torque, such as the torque resulting from the
lead angle, may turn the bolt. The amount of this turning, however, will be small since
=nc = is no longer equal to zero once the bolt turns and T may increase rapidly to the value
where the off-torque is not large enough to overcome the effective friction torque. Then
the bolt quits loosening.

6. CAUSES OF DYNAMIC BOLT SELF-LOOSENING

Due to the effect of the lead angle, an internal off-torque Toff is created under the
application of the preload Q. This off-torque wants to rotate the bolt in the loosening
direction and its value is equal to [5]:

Toff =Qre tan c, (41)
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where re is the equivalent friction radius of the thread and c is the lead angle. Due to the
friction on the threads, there exists a torque Tt resisting rotation of the bolt [18]:

Tt =Qm3 re /cos f, (42)

where f is the thread angle and m3 is the coefficient of friction at the threads. There also
exists a resisting torque Th on the bolt head:

Th =Qm2 reh , (43)

where m2 is the coefficient of friction at the bolt head and reh is the equivalent friction radius
of the bolt head. The values used for all of these variables in the simulations presented
in section 7 are listed in Table 4.

If the bolt intends to rotate, it has to overcome the resistance of Tt and Th . Generally,
the value of Toff from equation (41) is smaller than either Tt (equation (42)) or Th (equation
(43)), so that the bolt does not spontaneously loosen. From Figure 12, if relative transverse
motion (slip) occurs at the threads or at the bolt head, then the effective values of Tt or
Th , respectively, may fall below the value of Toff . It is obvious, therefore, that either slip
at the threads or slip at the bolt head is a necessary condition, though not a sufficient
condition, for bolt self-loosening to occur. For the sum of the effective values of Tt and
Th to be less than Toff , slip must occur simultaneously at the threads and the bolt head.
Therefore, it is necessary to determine the conditions that lead to the simultaneous
occurrence of slip at the threads and the bolt head.

Static experiments [9, 10] have verified that as the mass slips that no slip occurs at the
threads until the mass contacts the bolt, and that no slip occurs between the bolt head
and the mass if the mass contacts the bolt very slowly. In short, impact is the only

T 4

Parameter values for the self-loosening simulations

Symbol Definition Value

re Equivalent friction radius of threads (mm) 2·874
reh Equivalent friction radius of bolt head (mm) 4·201
rpitch Pitch radius of thread (mm) 2·725
c Thread lead angle (°) 4·18
f Thread angle (°) 30·0
ms1 Static coefficient of friction at plate 0·200
mk1 Dynamic coefficient of friction at plate 0·200
ms2 Static coefficient of friction at head 0·200
mk2 Dynamic coefficient of friction at head 0·200
m3 Coefficient of friction at threads 0·200
L Active length of bolt (mm) 29·439
L1 Active threaded length of bolt (mm) 14·605
L2 Active length of bolt inside plate (mm) 9·144
Im Mass moment of inertia of bolt (kg m2) 1·132E-8
mb Mass of bolt (kg) 9·991E-3
md Mass of disk (kg) 9·991
k1 Hertz contact stiffness (N/m) 9·282E8
k2 Bending stiffness of bolt (N/m) 1·490E6
kL Axial stiffness of bolt (N/m) 2·452E8
b Damping to stiffness constant ratio (s) 1·721E-6
E Clearance between bolt shank and hole (mm) 0·0838
Ad Excitation displacement amplitude (mm) 3·556
V Excitation frequency (rad/s) 64·72
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Figure 13. The experimental setup for dynamic tests.

phenomenon which can cause simultaneous slip at the threads and the bolt head. This
implies that impact is a necessary condition for dynamic self-loosening of bolts.

To test this theory two experiments were run with the apparatus depicted in Figure 13.
The plate was mounted on a shaker table which was subjected to a harmonic transverse
displacement. An accelerometer, an eddy current transducer (ECT), and an instrumented
bolt were used to measure the absolute acceleration of the mass, the relative displacement
between the mass and plate, and the preload in the bolt, respectively.

At first the shaker table was run at a fixed displacement amplitude while the harmonic
excitation frequency was increased. Three sets of data (from the ECT, the accelerometer,
and the instrumented bolt) were acquired at low sampling rates. As the frequency was
increased the acceleration amplitude also increased, until the acceleration excitation was
large enough to cause motion to occur between the mass and the plate (as monitored by
the ECT and the accelerometer). The experiment was stopped when Qm (the measured
preload) went to zero, signalling the total failure of the bolted connection. Results from
this test are shown in Figure 14. For the system described in this paper, the threshold
frequency was found to be 10·3 Hz for an initial preload Q(0) of 267 N.

For comparison a second test was run with the same conditions as in the first test, but
at a fixed frequency (9·85 Hz), which was selected to be just below the threshold frequency
at which impacts occurred. This threshold frequency is determined based on the values of
the clamping force Q, the excitation displacement amplitude Ad , the mass md , and the
coefficient of friction ms1. This test lasted for 10 h (354 600 cycles of the excitation motion)
and no dynamic loosening took place (Figure 15). These results strongly support the theory
that impacts play a critical role in bolt self-loosening.

Figure 14. Time history of the preload as the excitation frequency is increased.
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Figure 15. Time history of the preload for a fixed excitation frequency.

An analysis of the entire dynamic bolt self-loosening process as modelled above discloses
that the relative motion between the bolt head and the clamped mass is a more significant
phenomenon than is the transverse motion between the male and female threads. This is
true because the friction radius is larger at the bolt head than at the threads, and
consequently the friction torque that must be overcome by the off-torque is larger at the
bolt head. Additionally, the amplitude of the relative motion is smaller at the bolt head,
because the Hertz contact stiffness k1 is significantly larger than bending stiffness k2.

7. PREDICTION OF THE PROCESS OF BOLT SELF-LOOSENING

Consider the model of Figure 1 once again. If the excitation (amplitude or frequency)
is increased, impact may occur between the bolt shank and the mass. While an impact force
larger than the critical force Fcr (see references [9, 10]) is forcing the threads to slide
transversely, the mass may slide underneath the bolt head as the mass is rebounded by
the bolt shank, according to the model of Figure 5. These simultaneous relative motions
make it possible for the sum of Tt and Th , representing the resisting torques on the threads
and on the bolt head, respectively, to be less than the off-torque Toff . Therefore, the bolt
can rotate and loosen.

The angular motion of the bolt is governed by the equation

Toff −Tt −Th = Im u� , (44)

where Im is the mass moment of inertia of the bolt and u� is the angular acceleration of
the bolt. After a small time step Dt , the angular velocity changes from u� 0 to u� , and the
angular displacement changes from u0 to u:

u� =$(Toff −Tt −Th )
Im %Dt+ u� 0, u=$(Toff −Tt −Th )

2Im %(Dt)2 + u� 0 Dt+ u0. (45, 46)

Here it is assumed that the torques Toff , Tt and Th remain constant over the timestep Dt.
The change in the angular position Du represented in equation (46) leads to a reduction

in the preload DQ due to the reduction in the stretch of the bolt after the bolt has rotated.
The reduction in the preload is found to be

DQ= kL Durpitch tan (c), (47)

where kL is the axial stiffness of the bolt between the head and the threads, rpitch is the pitch
radius of the threads, c is the thread lead angle (see Table 4 for values used in this work)
and

Du= u− u0. (48)
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Once the bolt starts to rotate the circumferential velocity =nc = is no longer zero, and
neither are Tt and Th , which can be obtained by using equation (40) (see Figure 12).
Instead, when Tt and Th are increased to an extent such that u� in equation (45) becomes
zero, the bolt sticks again, and =nc = goes back to zero. Yet, if the relative transverse velocity
=nt = has not vanished, implying that the impact has not ended, Tt and Th may approach
zero once again. As a result, the bolt begins to rotate again. This process repeats
many times until the mass completely separates from the bolt at the end of the impact
event.

The circumferential to transverse velocity ratios at the threads Lt and at the bolt head
Lh are related to the relative velocities ż and ż1 from section 3 (see equations (27)) and the
angular velocity u� of equation (45):

Lt = b re u� >0L2(ż− ż1)
[L1 −L2]1 b (49)

and

Lh = =reh u� /(ż1) =. (50)

These values, along with the nominal friction torque values Tt0 (equation (42)) and Th0

(equation (43)) and the L versus T/T0 relationship of Figure 12 can be used to determine
the values of Tt and Th needed in equations (45) and (46).

Combining the motion model of equations (27) with the self-loosening model presented
in the current section leads to a numerical simulation of the self-loosening process.
Figure 16 shows the results of such a simulation (thin line with×symbol), using the values
listed in Table 4, in comparison with the experimental results previously presented in
Figure 14 (thick line without symbol). Note that the time axis for the experimental data
in Figure 16 has been shifted from that of Figure 14 so that the apparent start of the
self-loosening process corresponds with t=0. Additionally, the start of the simulations
results have been shifted to show the best agreement with the experimental data. The
vertical dotted lines mark the periods of the harmonic motion of the shaker table. The
agreement between the numerical simulation and the experimental data displayed in
Figure 16 is remarkable.

Figure 16. Comparison of simulation and experimental results of the self-loosening process. –×–, simulated
results; ——, experimental results from Figure 14.
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Figure 17. Self-loosening parameter study results: ×, repeated from Figure 16; t, b=1·7207×10−9 s; r+,
mS2 =0·22; q, k2=14·00×106 N/m: r, kL=1·618×108 N/m; w, fcr=0·22013.

8. DISCUSSION OF RESULTS

Before proceeding it is necessary to qualify the results presented in Figure 16. While the
agreement between the simulation and the experiment is exceptional, this agreement is only
reached after adjusting some of the parameter values to those listed in Table 4. In
particular, it is necessary to change the values of three of these parameters (ms2, k2 and
kL ) from the values that are determined from analytical models. Additionally, the
discontinuous contact damping model of equation (22) has been used and the affect of the
critical force Fcr at the threads (see references [9, 10]) is not accounted for in the results
of Figure 16. Figure 17 shows a comparison between the simulation results previously
presented in Figure 16 and the simulation results for the parameter variations listed.

To quantify the affects of the discontinuous contact damping model of equation (22)
the value of b (the damping to stiffness proportionality constant) was reduced by three
orders of magnitude. This assured that the value of the Hertz contact damping force c1 ż1

would always be less than 1% of the sums of the absolute values of the other terms in
the equations of motion (27). From Figure 17 it can be seen that this change has only a
minor effect on the self-loosening process. In future studies, the more accurate model of
equation (21) will be used.

Using a simple inclined plane test it is determined that the static coefficient of friction
ms1 between the plate and the mass is 0·22. From Table 4, it can be seen that a value of
0·20 (which is equal to the dynamic coefficient of friction mk1) is used in the numerical
simulation of Figure 16. Changing this value to 0·22 barely affects the self-loosening
prediction; therefore, for convenience, ms1 =0·20 is used in all of the subsequent parameter
studies.

Since ms1 =0·22, it would be reasonable to assume that the static coefficient of friction
ms2 between the bolt head and the mass would have the same value. However, when this
value is entered into the numerical simulation the results show very poor agreement with
the experimental data (see Figure 17). Increasing the value of ms2 increases the amount of
time between the beginning and end of a stick event between the bolt head and the mass
because it takes a larger force to overcome the larger friction force. This decreases the
amount of time during an impact where there is relative motion between the threads and
between the bolt head and mass, thereby slowing the self-loosening process, as shown in
Figure 17. Since the experimental data shows a more rapid self-loosening process, a value
of ms2 =0·20 is used in subsequent parameter studies. This value might be justified by
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reconsidering the behavior at the bolt head to mass interface during an impact. During
an impact, not only does the bolt head slide relative to the mass (as depicted in Figure 5)
but it also rotates relative to the mass (see section 7). Therefore, it is quite likely that the
bolt head is never totally at rest with respect to the mass during an impact, and therefore
it would not be necessary to account for the affect of static friction.

k2 represents the combined affect of the bending stiffness of the bolt and the stiffness
of the threads to transverse motion. To arrive at a value for this parameter a model similar
to that of Figure 6 has been developed. In this situation, however, the fixed end is replaced
by the transverse resistance of the threads, which is modelled as a linear spring. If the force
at the threads is below the critical value Fcr (see reference [9]), then the apparent stiffness
of this spring is infinite. Using the values from Table 4 it is found that k2=
14·00×108 N/m in this situation. From Figure 17, it can be seen that the simulation results
using this value are very similar to the results of Figure 16, until the preload Q is reduced
to approximately 70 N (t1 0·35 s). Beyond this point, the system goes to complete
loosening (Q=0) much more quickly for the larger value of k2 than it does in the
experimental data (Figure 16). It is not immediately clear from the analytical models why
the value of k2 should have this kind of effect on the self-loosening results. The smaller
value of k2 used in the simulation of Figure 16 can be justified by noting that it is quite
possible that the value of k2 varies with the preload Q, since the critical force Fcr will be
reduced as Q decreases. Additionally, assuming that the value of k2 is constant does not
account for the fact that the transverse stiffness of the threads is finite for a transverse load
at the threads which is greater than the critical force Fcr . On the other hand, the measured
motion of the mass z(t) is found to match experimental data better when the larger value
of k2 is used in a simulation. To account for all of these facts, a procedure could be
established to vary the value of k2, by varying the effective stiffness of the threads with
the value of Q. This has been done, and the self-loosening results are found to be very
similar to those presented in Figure 16. Therefore, for simplicity, since the smaller constant
value of k2 gives the best results for the self-loosening procedure it is used in the remainder
of the parameter studies.

kL represents the axial stiffness of the bolt, and from equation (47) it can be seen that
this value has a profound effect on the rate of self-loosening. If the bolt is considered to
be formed by a pair of cylindrical sections of varying radius (to represent the bolt shank
and the threaded section), the axial stiffness is found to be kL =1·618×108 N/m. From
Figure 17, it can be seen that this smaller value slows the predicted rate of the self-loosening
procedure. If the bolt is assumed to have a continuous cross-section along its active length,
then the axial stiffness is found to be kL =2·225×108 N/m, which is much closer to the
value used in Figure 16 (see Table 4). The value of kL used in Figure 16 can be arrived
at by assuming a continuous cross-section while reducing the value of the effective length
of the bolt to L=26·718 mm.

In reference [9], Zadoks and Yu state that there exists a critical force Fcr at the threads
that has to be overcome before motion can occur at this interface. Since motion at the
threads is a necessary condition for self-loosening, the simulation is developed so that
loosening would not occur if the force at the threads is below Fcr . It is also assumed that
the value of Fcr is directly proportional to the value of Q, since this threshold value is
assumed to be due mainly to the affect of friction on the threads. Threfore, the relationship
between Fcr and Q is

Fcr = fcr Q, (51)

where, from reference [9], fcr =0·22013. In Figure 16, the value of fcr is set to zero, which
implies that there is no critical force Fcr to be overcome. In Figure 17, when the value
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fcr =0·22013 is used, it can be seen that the self-loosening rate is decreased, as would be
expected. However, the results with fcr =0 are in much better agreement with the
experimental data. It is possible, that for small enough values of Q the critical force Fcr

is due only to friction, while it is due to friction and other effects for larger values of Q.
In this case, equation (51) would not be appropriate, and it is possible that fcr =0 would
be a close approximation of the resulting behavior.

Despite the fact that a number of parameter values need to be adjusted to improve the
agreement between simulation and experiment, the results presented in Figure 16 are
remarkable. These results show that the major factors affecting bolt self-loosening under
transverse excitation are accounted for in the simulation model presented above. These
factors include the piecewise continuous two-degree-of-freedom model of Figure 5 and
equations (27); the Hertz contact model between the clamped mass and the bolt shank
presented in section 2 and Figure 4, Figure 8 and Figure 9; and the model of the reduction
of the friction torque during relative motion presented in section 5 and Figure 12.

9. CONCLUSION

In this work, the self-loosening behavior of a transversely loaded bolted connection was
examined. Hertz contact theory was employed to find the relationship between contact
deformation and contact force between two elastic bodies (mass and bolt shank) when
impacts occur. A two-degree-of-freedom model of a bolt and a clamped mass was
established, from which the time histories of the relative displacement and velocity between
the mass and the bolt could be obtained. Then, if the excitation was known, the impact
forces and durations could be evaluated. Additionally, models of the variations of the
friction torques between the mass and the bolt head, and between the male and female
thread forms, as functions of the relative velocities were presented. The combination of
all of these models led to a simulation model which could be used to predict the complete
bolt self-loosening procedure. The results from this simulation were verified through a
comparison with experimental data.

Based on these analyses, the following conclusion can be drawn. If a bolt intends to
rotate, it has to overcome resisting friction torques at the threads and the bolt head. The
off-torque, which is only the source of self-loosening, is generally smaller in value than
either of these resisting torques. Only when impacts occur, which lead to simultaneous slip
between the threads and between the bolt head and the clamped mass, will the off-torque
be greater than the sum of the effective friction torques. Therefore, for a bolted connection
with a structure similar to that discussed in this work, impact is a necessary condition for
dynamic self-loosening. Another significant conclusion is that relative motion between the
bolt head and clamped part dominates the self-loosening process. This is not only due to
a larger friction radius at the bolt head than at the threads, but is also due to the smaller
amplitude of the relative motion between the bolt head and the clamped part. Based on
these results, practical suggestions for the prevention of self-loosening can be developed.
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